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Introduction
To combat the spread of COVID-19, actions have been taken in various di-
mensions, including discouraging travels, curbing non-essential interactions,
and increasing test capacity. However, it is still unclear what control and in-
tervention measures would have actual effect, especially to what extent, on
abating the spread of COVID-19.
• In this study, we developed a travel-network-based susceptible-exposed-
infectious-removed (SEIR) model that characterizes infections by state and
incorporates inflows and outflows of interstate travelers.

• We chose to use three parameters that can directly correspond to practical
control measures, and quantify their impact on the final output of the model.

Model
The parameters and model specification are defined as follows:
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S: susceptible, E: exposed, I: reported, U : unreported, R: removed, P =
S + E + U . nij: the flow from state j to i. bi: transmission rate. ri: reporting
rate of state. De: the latent period.

Fig. 1: Illustration of the travel flow-network augmented susceptible-exposed-infectious-removed model.

Results
We set r = 1 − αr(1 − r0) and b = αbb0, with r0 and b0 being inferred parameters.
(A) and (B) in Fig. 2 reveals that once the epidemic has reached a certain stage,
the difference caused by the relatively small number of imported cases is insignif-
icant. From Fig. 3, It can be seen that merely raising r cannot fully make basic
reproduction rate Re < 1.

Fig. 2: Left: the spatiotemporal distribution of predicted infected population. αt = 1 unless otherwise mentioned. (A)

αr = αb = 1; (B) αr = αb = 1, αt = 0.05; (C) αr = 0.1 and αb = 1; (D) αr = 1 and αb = 0.1; (E) αr = 0.1, αb = 0.1.

Fig. 3: Left: susceptible population as a function of αr. Right: the basic reproduction number for different αb and αr.
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Discussion
To mitigate the spread of COVID-19 in these states, a proactive approach
needs to be taken to prevent the exposed population from potentially infecting
other susceptible people. In Fig 4, we plot the increase of infections in terms
of the temporal lag in putting a person into quarantine (Dq). The longer one
waits to inform and isolate the exposed population, the more infected people
one observes.

Fig. 4: Susceptible population for different Dq. S significantly depends on the period from expose to

quarantine.

Data and Parameter Fitting
We employed daily and state specific historical data (I) to incrementally
calibrate the parameters u = (bi, ri, Ii, Ei, Si, Ui, Ri) in the model. With
Pn−1|n−1(u) being the probability density of u at tn−1, we evolve the model to
obtain prior density Pn|n−1(u) at tn. Then confirmed cases dn = (Ini ) is incor-
porated to update posterior density. We choose to utilize Ensemble Kalman
Filter which is steered towards analyzing systems having high dimensional
state variables [1]. The mobility data is collected from the SafeGraph busi-
ness venue database.
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Fig. 5: Left: flowchart of data assimilation. Gn−1,n is the forward map by running the ODE from tn−1 to tn.

Right: Inferred transmission rate b of CA during the data assimilation stage.


